99d570f17b
No more hacky macro module!
429 lines
15 KiB
Rust
429 lines
15 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
use std::num::{One, Zero, CheckedAdd};
|
|
use std::vec::bytes::{MutableByteVector, copy_memory};
|
|
|
|
|
|
/// Write a u64 into a vector, which must be 8 bytes long. The value is written in big-endian
|
|
/// format.
|
|
pub fn write_u64_be(dst: &mut[u8], input: u64) {
|
|
use std::cast::transmute;
|
|
use std::unstable::intrinsics::to_be64;
|
|
assert!(dst.len() == 8);
|
|
unsafe {
|
|
let x: *mut i64 = transmute(dst.unsafe_mut_ref(0));
|
|
*x = to_be64(input as i64);
|
|
}
|
|
}
|
|
|
|
/// Write a u32 into a vector, which must be 4 bytes long. The value is written in big-endian
|
|
/// format.
|
|
pub fn write_u32_be(dst: &mut[u8], input: u32) {
|
|
use std::cast::transmute;
|
|
use std::unstable::intrinsics::to_be32;
|
|
assert!(dst.len() == 4);
|
|
unsafe {
|
|
let x: *mut i32 = transmute(dst.unsafe_mut_ref(0));
|
|
*x = to_be32(input as i32);
|
|
}
|
|
}
|
|
|
|
/// Write a u32 into a vector, which must be 4 bytes long. The value is written in little-endian
|
|
/// format.
|
|
pub fn write_u32_le(dst: &mut[u8], input: u32) {
|
|
use std::cast::transmute;
|
|
use std::unstable::intrinsics::to_le32;
|
|
assert!(dst.len() == 4);
|
|
unsafe {
|
|
let x: *mut i32 = transmute(dst.unsafe_mut_ref(0));
|
|
*x = to_le32(input as i32);
|
|
}
|
|
}
|
|
|
|
/// Read a vector of bytes into a vector of u64s. The values are read in big-endian format.
|
|
pub fn read_u64v_be(dst: &mut[u64], input: &[u8]) {
|
|
use std::cast::transmute;
|
|
use std::unstable::intrinsics::to_be64;
|
|
assert!(dst.len() * 8 == input.len());
|
|
unsafe {
|
|
let mut x: *mut i64 = transmute(dst.unsafe_mut_ref(0));
|
|
let mut y: *i64 = transmute(input.unsafe_ref(0));
|
|
for _ in range(0, dst.len()) {
|
|
*x = to_be64(*y);
|
|
x = x.offset(1);
|
|
y = y.offset(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Read a vector of bytes into a vector of u32s. The values are read in big-endian format.
|
|
pub fn read_u32v_be(dst: &mut[u32], input: &[u8]) {
|
|
use std::cast::transmute;
|
|
use std::unstable::intrinsics::to_be32;
|
|
assert!(dst.len() * 4 == input.len());
|
|
unsafe {
|
|
let mut x: *mut i32 = transmute(dst.unsafe_mut_ref(0));
|
|
let mut y: *i32 = transmute(input.unsafe_ref(0));
|
|
for _ in range(0, dst.len()) {
|
|
*x = to_be32(*y);
|
|
x = x.offset(1);
|
|
y = y.offset(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Read a vector of bytes into a vector of u32s. The values are read in little-endian format.
|
|
pub fn read_u32v_le(dst: &mut[u32], input: &[u8]) {
|
|
use std::cast::transmute;
|
|
use std::unstable::intrinsics::to_le32;
|
|
assert!(dst.len() * 4 == input.len());
|
|
unsafe {
|
|
let mut x: *mut i32 = transmute(dst.unsafe_mut_ref(0));
|
|
let mut y: *i32 = transmute(input.unsafe_ref(0));
|
|
for _ in range(0, dst.len()) {
|
|
*x = to_le32(*y);
|
|
x = x.offset(1);
|
|
y = y.offset(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
trait ToBits {
|
|
/// Convert the value in bytes to the number of bits, a tuple where the 1st item is the
|
|
/// high-order value and the 2nd item is the low order value.
|
|
fn to_bits(self) -> (Self, Self);
|
|
}
|
|
|
|
impl ToBits for u64 {
|
|
fn to_bits(self) -> (u64, u64) {
|
|
return (self >> 61, self << 3);
|
|
}
|
|
}
|
|
|
|
/// Adds the specified number of bytes to the bit count. fail!() if this would cause numeric
|
|
/// overflow.
|
|
pub fn add_bytes_to_bits<T: Int + CheckedAdd + ToBits>(bits: T, bytes: T) -> T {
|
|
let (new_high_bits, new_low_bits) = bytes.to_bits();
|
|
|
|
if new_high_bits > Zero::zero() {
|
|
fail!("Numeric overflow occured.")
|
|
}
|
|
|
|
match bits.checked_add(&new_low_bits) {
|
|
Some(x) => return x,
|
|
None => fail!("Numeric overflow occured.")
|
|
}
|
|
}
|
|
|
|
/// Adds the specified number of bytes to the bit count, which is a tuple where the first element is
|
|
/// the high order value. fail!() if this would cause numeric overflow.
|
|
pub fn add_bytes_to_bits_tuple
|
|
<T: Int + Unsigned + CheckedAdd + ToBits>
|
|
(bits: (T, T), bytes: T) -> (T, T) {
|
|
let (new_high_bits, new_low_bits) = bytes.to_bits();
|
|
let (hi, low) = bits;
|
|
|
|
// Add the low order value - if there is no overflow, then add the high order values
|
|
// If the addition of the low order values causes overflow, add one to the high order values
|
|
// before adding them.
|
|
match low.checked_add(&new_low_bits) {
|
|
Some(x) => {
|
|
if new_high_bits == Zero::zero() {
|
|
// This is the fast path - every other alternative will rarely occur in practice
|
|
// considering how large an input would need to be for those paths to be used.
|
|
return (hi, x);
|
|
} else {
|
|
match hi.checked_add(&new_high_bits) {
|
|
Some(y) => return (y, x),
|
|
None => fail!("Numeric overflow occured.")
|
|
}
|
|
}
|
|
},
|
|
None => {
|
|
let one: T = One::one();
|
|
let z = match new_high_bits.checked_add(&one) {
|
|
Some(w) => w,
|
|
None => fail!("Numeric overflow occured.")
|
|
};
|
|
match hi.checked_add(&z) {
|
|
// This re-executes the addition that was already performed earlier when overflow
|
|
// occured, this time allowing the overflow to happen. Technically, this could be
|
|
// avoided by using the checked add intrinsic directly, but that involves using
|
|
// unsafe code and is not really worthwhile considering how infrequently code will
|
|
// run in practice. This is the reason that this function requires that the type T
|
|
// be Unsigned - overflow is not defined for Signed types. This function could be
|
|
// implemented for signed types as well if that were needed.
|
|
Some(y) => return (y, low + new_low_bits),
|
|
None => fail!("Numeric overflow occured.")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// A FixedBuffer, likes its name implies, is a fixed size buffer. When the buffer becomes full, it
|
|
/// must be processed. The input() method takes care of processing and then clearing the buffer
|
|
/// automatically. However, other methods do not and require the caller to process the buffer. Any
|
|
/// method that modifies the buffer directory or provides the caller with bytes that can be modifies
|
|
/// results in those bytes being marked as used by the buffer.
|
|
pub trait FixedBuffer {
|
|
/// Input a vector of bytes. If the buffer becomes full, process it with the provided
|
|
/// function and then clear the buffer.
|
|
fn input(&mut self, input: &[u8], func: |&[u8]|);
|
|
|
|
/// Reset the buffer.
|
|
fn reset(&mut self);
|
|
|
|
/// Zero the buffer up until the specified index. The buffer position currently must not be
|
|
/// greater than that index.
|
|
fn zero_until(&mut self, idx: uint);
|
|
|
|
/// Get a slice of the buffer of the specified size. There must be at least that many bytes
|
|
/// remaining in the buffer.
|
|
fn next<'s>(&'s mut self, len: uint) -> &'s mut [u8];
|
|
|
|
/// Get the current buffer. The buffer must already be full. This clears the buffer as well.
|
|
fn full_buffer<'s>(&'s mut self) -> &'s [u8];
|
|
|
|
/// Get the current position of the buffer.
|
|
fn position(&self) -> uint;
|
|
|
|
/// Get the number of bytes remaining in the buffer until it is full.
|
|
fn remaining(&self) -> uint;
|
|
|
|
/// Get the size of the buffer
|
|
fn size(&self) -> uint;
|
|
}
|
|
|
|
macro_rules! impl_fixed_buffer( ($name:ident, $size:expr) => (
|
|
impl FixedBuffer for $name {
|
|
fn input(&mut self, input: &[u8], func: |&[u8]|) {
|
|
let mut i = 0;
|
|
|
|
// FIXME: #6304 - This local variable shouldn't be necessary.
|
|
let size = $size;
|
|
|
|
// If there is already data in the buffer, copy as much as we can into it and process
|
|
// the data if the buffer becomes full.
|
|
if self.buffer_idx != 0 {
|
|
let buffer_remaining = size - self.buffer_idx;
|
|
if input.len() >= buffer_remaining {
|
|
copy_memory(
|
|
self.buffer.mut_slice(self.buffer_idx, size),
|
|
input.slice_to(buffer_remaining),
|
|
buffer_remaining);
|
|
self.buffer_idx = 0;
|
|
func(self.buffer);
|
|
i += buffer_remaining;
|
|
} else {
|
|
copy_memory(
|
|
self.buffer.mut_slice(self.buffer_idx, self.buffer_idx + input.len()),
|
|
input,
|
|
input.len());
|
|
self.buffer_idx += input.len();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// While we have at least a full buffer size chunks's worth of data, process that data
|
|
// without copying it into the buffer
|
|
while input.len() - i >= size {
|
|
func(input.slice(i, i + size));
|
|
i += size;
|
|
}
|
|
|
|
// Copy any input data into the buffer. At this point in the method, the ammount of
|
|
// data left in the input vector will be less than the buffer size and the buffer will
|
|
// be empty.
|
|
let input_remaining = input.len() - i;
|
|
copy_memory(
|
|
self.buffer.mut_slice(0, input_remaining),
|
|
input.slice_from(i),
|
|
input.len() - i);
|
|
self.buffer_idx += input_remaining;
|
|
}
|
|
|
|
fn reset(&mut self) {
|
|
self.buffer_idx = 0;
|
|
}
|
|
|
|
fn zero_until(&mut self, idx: uint) {
|
|
assert!(idx >= self.buffer_idx);
|
|
self.buffer.mut_slice(self.buffer_idx, idx).set_memory(0);
|
|
self.buffer_idx = idx;
|
|
}
|
|
|
|
fn next<'s>(&'s mut self, len: uint) -> &'s mut [u8] {
|
|
self.buffer_idx += len;
|
|
return self.buffer.mut_slice(self.buffer_idx - len, self.buffer_idx);
|
|
}
|
|
|
|
fn full_buffer<'s>(&'s mut self) -> &'s [u8] {
|
|
assert!(self.buffer_idx == $size);
|
|
self.buffer_idx = 0;
|
|
return self.buffer.slice_to($size);
|
|
}
|
|
|
|
fn position(&self) -> uint { self.buffer_idx }
|
|
|
|
fn remaining(&self) -> uint { $size - self.buffer_idx }
|
|
|
|
fn size(&self) -> uint { $size }
|
|
}
|
|
))
|
|
|
|
|
|
/// A fixed size buffer of 64 bytes useful for cryptographic operations.
|
|
pub struct FixedBuffer64 {
|
|
priv buffer: [u8, ..64],
|
|
priv buffer_idx: uint,
|
|
}
|
|
|
|
impl FixedBuffer64 {
|
|
/// Create a new buffer
|
|
pub fn new() -> FixedBuffer64 {
|
|
return FixedBuffer64 {
|
|
buffer: [0u8, ..64],
|
|
buffer_idx: 0
|
|
};
|
|
}
|
|
}
|
|
|
|
impl_fixed_buffer!(FixedBuffer64, 64)
|
|
|
|
/// A fixed size buffer of 128 bytes useful for cryptographic operations.
|
|
pub struct FixedBuffer128 {
|
|
priv buffer: [u8, ..128],
|
|
priv buffer_idx: uint,
|
|
}
|
|
|
|
impl FixedBuffer128 {
|
|
/// Create a new buffer
|
|
pub fn new() -> FixedBuffer128 {
|
|
return FixedBuffer128 {
|
|
buffer: [0u8, ..128],
|
|
buffer_idx: 0
|
|
};
|
|
}
|
|
}
|
|
|
|
impl_fixed_buffer!(FixedBuffer128, 128)
|
|
|
|
|
|
/// The StandardPadding trait adds a method useful for various hash algorithms to a FixedBuffer
|
|
/// struct.
|
|
pub trait StandardPadding {
|
|
/// Add standard padding to the buffer. The buffer must not be full when this method is called
|
|
/// and is guaranteed to have exactly rem remaining bytes when it returns. If there are not at
|
|
/// least rem bytes available, the buffer will be zero padded, processed, cleared, and then
|
|
/// filled with zeros again until only rem bytes are remaining.
|
|
fn standard_padding(&mut self, rem: uint, func: |&[u8]|);
|
|
}
|
|
|
|
impl <T: FixedBuffer> StandardPadding for T {
|
|
fn standard_padding(&mut self, rem: uint, func: |&[u8]|) {
|
|
let size = self.size();
|
|
|
|
self.next(1)[0] = 128;
|
|
|
|
if self.remaining() < rem {
|
|
self.zero_until(size);
|
|
func(self.full_buffer());
|
|
}
|
|
|
|
self.zero_until(size - rem);
|
|
}
|
|
}
|
|
|
|
|
|
#[cfg(test)]
|
|
pub mod test {
|
|
use std::rand::{IsaacRng, Rng};
|
|
use std::vec;
|
|
use extra::hex::FromHex;
|
|
|
|
use super::{add_bytes_to_bits, add_bytes_to_bits_tuple};
|
|
use super::super::digest::Digest;
|
|
|
|
/// Feed 1,000,000 'a's into the digest with varying input sizes and check that the result is
|
|
/// correct.
|
|
pub fn test_digest_1million_random<D: Digest>(digest: &mut D, blocksize: uint, expected: &str) {
|
|
let total_size = 1000000;
|
|
let buffer = vec::from_elem(blocksize * 2, 'a' as u8);
|
|
let mut rng = IsaacRng::new_unseeded();
|
|
let mut count = 0;
|
|
|
|
digest.reset();
|
|
|
|
while count < total_size {
|
|
let next: uint = rng.gen_range(0, 2 * blocksize + 1);
|
|
let remaining = total_size - count;
|
|
let size = if next > remaining { remaining } else { next };
|
|
digest.input(buffer.slice_to(size));
|
|
count += size;
|
|
}
|
|
|
|
let result_str = digest.result_str();
|
|
let result_bytes = digest.result_bytes();
|
|
|
|
assert_eq!(expected, result_str.as_slice());
|
|
assert_eq!(expected.from_hex().unwrap(), result_bytes);
|
|
}
|
|
|
|
// A normal addition - no overflow occurs
|
|
#[test]
|
|
fn test_add_bytes_to_bits_ok() {
|
|
assert!(add_bytes_to_bits::<u64>(100, 10) == 180);
|
|
}
|
|
|
|
// A simple failure case - adding 1 to the max value
|
|
#[test]
|
|
#[should_fail]
|
|
fn test_add_bytes_to_bits_overflow() {
|
|
add_bytes_to_bits::<u64>(Bounded::max_value(), 1);
|
|
}
|
|
|
|
// A normal addition - no overflow occurs (fast path)
|
|
#[test]
|
|
fn test_add_bytes_to_bits_tuple_ok() {
|
|
assert!(add_bytes_to_bits_tuple::<u64>((5, 100), 10) == (5, 180));
|
|
}
|
|
|
|
// The low order value overflows into the high order value
|
|
#[test]
|
|
fn test_add_bytes_to_bits_tuple_ok2() {
|
|
assert!(add_bytes_to_bits_tuple::<u64>((5, Bounded::max_value()), 1) == (6, 7));
|
|
}
|
|
|
|
// The value to add is too large to be converted into bits without overflowing its type
|
|
#[test]
|
|
fn test_add_bytes_to_bits_tuple_ok3() {
|
|
assert!(add_bytes_to_bits_tuple::<u64>((5, 0), 0x4000000000000001) == (7, 8));
|
|
}
|
|
|
|
// A simple failure case - adding 1 to the max value
|
|
#[test]
|
|
#[should_fail]
|
|
fn test_add_bytes_to_bits_tuple_overflow() {
|
|
add_bytes_to_bits_tuple::<u64>((Bounded::max_value(), Bounded::max_value()), 1);
|
|
}
|
|
|
|
// The value to add is too large to convert to bytes without overflowing its type, but the high
|
|
// order value from this conversion overflows when added to the existing high order value
|
|
#[test]
|
|
#[should_fail]
|
|
fn test_add_bytes_to_bits_tuple_overflow2() {
|
|
let value: u64 = Bounded::max_value();
|
|
add_bytes_to_bits_tuple::<u64>((value - 1, 0), 0x8000000000000000);
|
|
}
|
|
}
|