plane/apiserver/plane/utils/analytics_plot.py
2023-09-06 16:03:41 +05:30

147 lines
4.9 KiB
Python

# Python imports
from itertools import groupby
from datetime import timedelta
# Django import
from django.db import models
from django.db.models.functions import TruncDate
from django.db.models import Count, F, Sum, Value, Case, When, CharField
from django.db.models.functions import Coalesce, ExtractMonth, ExtractYear, Concat
# Module imports
from plane.db.models import Issue
def build_graph_plot(queryset, x_axis, y_axis, segment=None):
temp_axis = x_axis
if x_axis in ["created_at", "start_date", "target_date", "completed_at"]:
year = ExtractYear(x_axis)
month = ExtractMonth(x_axis)
dimension = Concat(year, Value("-"), month, output_field=CharField())
queryset = queryset.annotate(dimension=dimension)
x_axis = "dimension"
else:
queryset = queryset.annotate(dimension=F(x_axis))
x_axis = "dimension"
if x_axis in ["created_at", "start_date", "target_date", "completed_at"]:
queryset = queryset.exclude(x_axis__is_null=True)
if segment in ["created_at", "start_date", "target_date", "completed_at"]:
year = ExtractYear(segment)
month = ExtractMonth(segment)
dimension = Concat(year, Value("-"), month, output_field=CharField())
queryset = queryset.annotate(segmented=dimension)
segment = "segmented"
queryset = queryset.values(x_axis)
# Group queryset by x_axis field
if y_axis == "issue_count":
queryset = queryset.annotate(
is_null=Case(
When(dimension__isnull=True, then=Value("None")),
default=Value("not_null"),
output_field=models.CharField(max_length=8),
),
dimension_ex=Coalesce("dimension", Value("null")),
).values("dimension")
if segment:
queryset = queryset.annotate(segment=F(segment)).values(
"dimension", "segment"
)
else:
queryset = queryset.values("dimension")
queryset = queryset.annotate(count=Count("*")).order_by("dimension")
if y_axis == "estimate":
queryset = queryset.annotate(estimate=Sum("estimate_point")).order_by(x_axis)
if segment:
queryset = queryset.annotate(segment=F(segment)).values(
"dimension", "segment", "estimate"
)
else:
queryset = queryset.values("dimension", "estimate")
result_values = list(queryset)
grouped_data = {}
for key, items in groupby(result_values, key=lambda x: x[str("dimension")]):
grouped_data[str(key)] = list(items)
sorted_data = grouped_data
if temp_axis == "priority":
order = ["low", "medium", "high", "urgent", "None"]
sorted_data = {key: grouped_data[key] for key in order if key in grouped_data}
else:
sorted_data = dict(sorted(grouped_data.items(), key=lambda x: (x[0] == "None", x[0])))
return sorted_data
def burndown_plot(queryset, slug, project_id, cycle_id=None, module_id=None):
# Total Issues in Cycle or Module
total_issues = queryset.total_issues
if cycle_id:
# Get all dates between the two dates
date_range = [
queryset.start_date + timedelta(days=x)
for x in range((queryset.end_date - queryset.start_date).days + 1)
]
chart_data = {str(date): 0 for date in date_range}
completed_issues_distribution = (
Issue.issue_objects.filter(
workspace__slug=slug,
project_id=project_id,
issue_cycle__cycle_id=cycle_id,
)
.annotate(date=TruncDate("completed_at"))
.values("date")
.annotate(total_completed=Count("id"))
.values("date", "total_completed")
.order_by("date")
)
if module_id:
# Get all dates between the two dates
date_range = [
queryset.start_date + timedelta(days=x)
for x in range((queryset.target_date - queryset.start_date).days + 1)
]
chart_data = {str(date): 0 for date in date_range}
completed_issues_distribution = (
Issue.issue_objects.filter(
workspace__slug=slug,
project_id=project_id,
issue_module__module_id=module_id,
)
.annotate(date=TruncDate("completed_at"))
.values("date")
.annotate(total_completed=Count("id"))
.values("date", "total_completed")
.order_by("date")
)
for date in date_range:
cumulative_pending_issues = total_issues
total_completed = 0
total_completed = sum(
[
item["total_completed"]
for item in completed_issues_distribution
if item["date"] is not None and item["date"] <= date
]
)
cumulative_pending_issues -= total_completed
chart_data[str(date)] = cumulative_pending_issues
return chart_data